Sorry, you need to enable JavaScript to visit this website.

ROS and 9-oxylipins are correlated with deoxynivalenol accumulation in the germinating caryopses of Triticum aestivum after Fusarium graminearum infection

TitleROS and 9-oxylipins are correlated with deoxynivalenol accumulation in the germinating caryopses of Triticum aestivum after Fusarium graminearum infection
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2014
AuthorsNobili, Chiara, D’Angeli S., Altamura M.M., Scala V., Fabbri Anna Adele, Reverberi M., and Fanelli Corrado
JournalEuropean Journal of Plant Pathology
Volume139
Pagination423 - 438
Date Published2014
ISBN Number09291873 (ISSN)
Keywordsaggressiveness factors, Fusarium, Fusarium seedling blight, Fusarium toxins, Gibberella zeae, Oxidative stress, programmed cell death, tolerance factors, Triticum aestivum
Abstract

Wheat germinating caryopses may represent a starting point for the Fusarium Head Blight disease; however, only few studies concern the defence repertoire of wheat caryopses against fungal challenge. The germinating caryopses of two wheat commercial varieties (Blasco and Sagittario), differentially susceptible to FHB in the field, were inoculated with F. graminearum and the redox status in the interaction milieu, oxylipin production, the expression profile of some host-defence related genes, and programmed cell death in the aleuronic layer, were analysed. In Sagittario, the redox balance was profoundly modified and 9-oxylipins accumulated during fungal contamination. In this variety, F. graminearum produced a high quantity of deoxynivalenol whilst programmed cell death, also through metacaspases activation, was enhanced in the aleuronic layer of its caryopses. In Blasco, the expression of tolerance factors such as Pathogenesis-Related-protein1, glucosyl-transferase and glutathione transferase genes was up-regulated consequent to infection. Results show that unscavenged ROS and 9-oxylipins may be related to deoxynivalenol accumulation in the germinating caryopses of wheat after F. graminearum infection. © 2014 Koninklijke Nederlandse Planteziektenkundige Vereniging.

Notes

Cited By (since 1996):1Export Date: 16 September 2014CODEN: EPLPECorrespondence Address: Reverberi, M.; Università Sapienza, Dipartimento di Biologia Ambientale, Largo Cristina di Svezia, 24, 00165 Rome, Italy; email: massimo.reverberi@uniroma1.itReferences: Berthiller, F., Dall’Asta, C., Schuhmacher, R., Lemmens, M., Adam, G., Krska, R., Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by Liquid Chromatography-tandem mass spectrometry (2005) Journal of Agricultural Food Chemistry, 53, pp. 1-5;Berthiller, F., Sulyok, M., Krska, R., Schuhmacher, R., Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals (2007) International Journal of Food Microbiology, 119, pp. 33-37; Birzele, B., Prange, A., Krämer, J., Deoxynivalenol and ochratoxin A in German wheat and changes of level in relation to storage parameters (2000) Food Additives and Contaminants, 17 (12), pp. 1027-1035; Boddu, J., Cho, S., Muehlbauer, G.J., Transcriptome analysis of trichothecene-induced gene expression in barley (2007) Molecular Plant-Microbe Interactions, 20, pp. 1364-1375; Brown, N.A., Urban, M., van de Meene, A.M., Hammond-Kosack, K.E., The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears (2010) Fungal Biology, 114, pp. 555-571; Burow, G.B., Nesbitt, T.C., Dunlap, J., Keller, N., Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis (1997) Molecular Plant-Microbe Interactions, 10, pp. 380-387; Bushnell, W.R., Hazen, B.E., Pritsch, C., Histology and physiology of Fusarium head blight (2003) Fusarium Head Blight of Wheat and Barley, pp. 95-105. , K. J. Leonard and W. R. Bushnell (Eds.), St. Paul: APS Press; Champeil, A., Dorè, T., Fourbe, J.F., Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains (2004) Plant Science, 166, pp. 1389-1415; Christensen, S.A., Kolomiets, M.V., The lipid language of plant-fungal interactions (2010) Fungal Genetic and Biology, 47 (12), pp. 962-972; D’Angeli, S., Altamura, M., Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization (2007) Planta, 225, pp. 1147-1163; Desmond, O.J., Manners, J.M., Stephens, A.E., Maclean, D.J., Schenk, P.M., Gardiner, D.M., The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defense responses in wheat (2008) Molecular of Plant Pathology, 9, pp. 435-445; Desmond, O.J., Manners, J.M., Schenk, P.M., Maclean, D.J., Kazan, K., Gene expression in the wheat response to infection by Fusarium pseudograminearum (2009) Physiological and Molecular Plant Pathology, 73, pp. 40-47; Ding, S., Mehrabi, R., Koten, C., Kang, Z., Wie, Y., Seong, K., Kistler, H.C., Xu, J., Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum (2009) Eukaryotic Cell, 8 (6), pp. 867-876; Dominguez, F., Moreno, J., Cejudo, F.J., A giberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death (2004) Journal of Biological Chemistry, 279 (12), pp. 11530-11536; Dornez, E., Croes, E., Gebruers, K., Carpentier, S., Swennen, R., Laukens, K., Witters, E., Courtin, C.M., 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum DeltaTri5 infection and grain development (2010) Proteomics, 10 (12), pp. 2303-2319; Fahmy, T., (2003), XLSTAT-Pro 7. 0 (XLSTAT), Paris, France, AddinsoftFärber, P., Geisen, R., Holzapfel, W.H., Detection of aflatoxinogenic fungi in figs by a PCR reaction (1997) International Journal of Food Microbiology, 36 (2-3), pp. 215-220; Fath, A., Bethke, P., Lonsdale, J., Meza-Romero, R., Jones, R., Programmed cell death in cereal aleurone (2000) Plant Molecular Biology, 44, pp. 255-266; Gallie, D.R., Programmed cell death during seed development and germination (2004) Programmed Cell Death in Plants, pp. 44-70. , J. Gray (Ed.), USA: CRC Press; Gao, X.Q., Kolomiets, M.V., Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi (2009) Toxin Review, 28, pp. 79-88; Gardiner, S.A., Boddu, J., Berthiller, F., Hametner, C., Stupar, R.M., Adam, G., Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification (2010) Molecular Plant-Microbe Interaction, 23 (7), pp. 962-976; Greenberg, J.T., Yao, N., The role and regulation of programmed cell death in plant-pathogen interactions (2004) Cell Microbiology, 6 (3), pp. 201-211; Gunawardena, A.H., Pearce, D.M., Jackson, M.B., Hawes, R.C., Evans, D.E., Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mais L.) (2001) Planta, 212, pp. 205-214; Halliwell, B., Gutteridge, J.M.C., (2007) Free Radicals in Biology and Medicine, , UK: University Press Oxford; Iori, A., L’Aurora, A., Matere, A., Sereni, L., Casini, F., Pasquini, M., Frumenti biologici: prevale la septoriosi (2008) Informatore Agrario, 42, pp. 53-55; Kaberee, F., Hampton, J.G., Hill, M.J., Transmission of Fusarium graminearum (Schwabe) from maize seeds to seedlings (1997) Seed Science Technology, 25, pp. 245-252; Kazan, K., Gardiner, D.M., Manners, J.M., On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance (2012) Molecular Plant Pathology, 13 (4), pp. 399-413; Kikot, G.E., Hours, R.A., Alconada, T.M., Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review (2009) Journal of Basic Microbiology, 49 (3), pp. 231-241; Kobayashi, H., Ikeda, T.M., Nagata, K., Spatial and temporal progress of programmed cell death in the developing starchy endosperm of rice (2013) Planta, 237, pp. 1393-1400; Konietzny, U., Greiner, R., The application of PCR in the detection of mycotoxigenic fungi in foods (2003) Brazilian Journal of Microbiology, 34, pp. 283-300; Kotchoni, S.W., Gachomo, E.W., The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants (2006) Journal Bioscience, 31 (3), pp. 389-404; Kumaraswamy, G.K., Bollina, V., Kushalappa, A.C., Choo, T.M., Dion, Y., Rioux, S., Mamer, O., Faubert, D., Metabolomics technology to phenotype resistance in barley against Gibberella zeae (2011) European Journal of Plant Pathology, 130, pp. 29-43; Lemmens, M., Sholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., Adam, G., Ruckenbauer, P., The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head resistance in wheat (2005) Molecular Plant-Microbe Interaction, 18 (12), pp. 1318-1324; Li, X., Zhang, J.B., Song, B., Li, H.P., Xu, H.Q., Qu, B., Dang, F.J., Liao, Y.C., Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome P450 gene (2010) Phytopathology, 100, pp. 183-191; Makandar, R., Nalam, V., Chaturvedi, R., Jeannotte, R., Sparks, A.A., Shah, J., Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum (2010) Molecular Plant-Microbe Interaction, 23 (7), pp. 861-870; Mittler, R., Shulaev, V., Programmed cell death in plants: future perspectives, applications and methods (2004) Programmed Cell Death in Plants, pp. 251-264. , J. Gray (Ed.), Oxford: Blackwell Publishing (CRC press); Mittler, R., Vanderauwera, S., Gollery, M., van Breusegem, F., The reactive oxygen gene network of plants (2004) Trends in Plant Science, 9, pp. 490-498; Montibus, M., Ducos, C., Bonnin-Verdal, M.N., Bormaan, J., Ponts, N., Richard-Forget, F., Barreau, C., The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum (2013) PLOS ONE, 8 (12), pp. e83377; Mudge, A.M., Dill-Macky, R., Dong, Y., Gardiner, D.M., White, R.G., Manners, J.M., A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum (2006) Physiological and Molecular Plant Pathology, 69, pp. 73-85; Neill, S., Desikan, R., Hancock, J., Hydrogen peroxide signalling (2002) Current Opinion in Plant Biology, 5, pp. 388-395; Pasquini, M., Iori, A., Matere, A., Sereni, L., Casini, F., L’Aurora, A., Cacciatori, P., Notario, T., Sui frumenti più septoriosi e fusariosi della spiga (2008) Informatore Agrario, 46, pp. 48-52; Piszczek, E., Dudkiewicz, M., Sobczak, M., Molecular cloning and phylogenetic analysis of cereal type II metacaspase cDNA from wheat (2011) Biologia Plantarum, 55 (4), pp. 614-624; Ponts, N., Pinson-Gadais, L., Barreau, C., Richard-Forget, F., Ouellet, T., Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum (2007) FEMS Letters, 581, pp. 443-447; Proctor, R.H., Hohn, T.M., McCormick, P., Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthectic gene (1995) Molecular Plant-Microbe Interaction, 8, pp. 593-601; Reverberi, M., Zjalic, S., Punelli, F., Ricelli, A., Fabbri, A.A., Fanelli, C., Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds (2007) Food Additives and Contaminants, 24 (10), pp. 1070-1075; Reverberi, M., Zjalic, S., Ricelli, A., Punelli, F., Camera, E., Fabbri, C., Picardo, M., Fabbri, A.A., Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene (2008) Eukariotic Cell, 7 (6), pp. 988-1000; Rusterucci, C., Montillet, J.L., Agnel, J.P., Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves (1999) Journal of Biological Chemistry, 274, pp. 36446-36455; Sabelli, P., replicate and die for your own good: Endoreduplication and cell death in the cereal endosperm (2012) Journal of Cereal Science, 56, pp. 9-20; Schweiger, W., Boddu, J., Shin, S., Poppenberger, B., Berthiller, F., Lemmens, M., Muehlbauer, G.J., Adam, G., Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast (2010) Molecular Plant-Microbe Interactions, 23, pp. 977-986; Tomassini, A., Sella, L., Raiola, A., D’Ovidio, R., Favaron, F., Characterization and expression of Fusarium graminearum endo-polygalacturonases in vitro and during wheat infection (2009) Plant Pathology, 58 (3), pp. 556-564; Trail, F., For blighted waves of grain: Fusarium graminearum in the postgenomics era (2009) Plant Physiology, 149 (1), pp. 103-110; Vizcay-Barrena, G., Wilson, Z.A., Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant (2006) Journal of Experimental Botany, 57 (1), pp. 2709-2717; Voigt, C.A., Schafer, W., Salomon, S., A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals (2005) Plant Journal, 42, pp. 364-375; Wang, D., Amornsiripanitch, N., Dong, X., A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants (2006) PloS Pathogens, 11, pp. 1042-1050; Wang, X., Wang, X., Feng, H., Tang, C., Bai, P., Wie, G., Huang, L., Kang, Z., TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. Tritici (2012) Molecular Plant-Microbe Interactions, 25 (6), pp. 755-764; Wu, A.B., Li, H.P., Zhao, C.S., Liao, Y.C., Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations (2005) Mycopathologia, 160, pp. 75-83; Yang, F., Svensson, B., Finnie, C., Response of germinating barley to Fusarium graminearum: the first molecular insight into Fusarium seedling blight (2011) Plant Physiology and Biochemistry, , doi:10.1016/j.plaphy.2011.07.004; Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., Klessig, D.F., NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid (2000) Molecular Plant-Microbe Interactions, 13, pp. 191-202; Zhou, W., Kolb, F.L., Riechers, D.E., Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum) (2005) Genome, 48 (5), pp. 770-780; Zhou, W., Eudes, F., Laroche, A., Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum (2006) Proteomics, 6 (16), pp. 4599-4609

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84899916415&partnerID=40&md5=76aeb1273c5326a3c627b2fb0626fa71
DOI10.1007/s10658-014-0401-1
Citation Key4757