Sorry, you need to enable JavaScript to visit this website.

Pentacyano(pyridine)chromate(III): Synthesis, Characterization, and Photochemistry

TitlePentacyano(pyridine)chromate(III): Synthesis, Characterization, and Photochemistry
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication1997
AuthorsRiccieri, P., Zinato E., and Aliboni A.
JournalInorganic Chemistry
Volume36
Pagination2279 - 2286
Date Published1997
ISBN Number00201669 (ISSN)
Abstract

The Cr(CN)5(py)2- anion (py = pyridine) has been prepared by acid-promoted methanolysis of Cr(CN)63- followed by reaction with pyridine, isolated as the potassium salt, and characterized by absorption spectra (λmax: 403 and 256 nm in H2O; 411 nm in Me2SO) and phosphorescence, observed in Me2SO (λmax, 774 nm; τ = 56 μs at 20 °C) but not in H2O. In acid aqueous solution the complex decomposes stepwise to Cr(H2O)5(py)3+; by contrast, the thermal reaction in Me2SO leads to Cr(CN)5(Me2SO)2- with first-order kinetics (k25 = 9.8 × 10-7 s-1, ΔH‡ = 138 ± 8 kJ mol-1). Ligand-field (LF) band irradiation results in substitution of py and CN-. The quantum yields, measured by ligand analysis, spectrophotometry, and HPLC, are as follows: φpyJ = 0.08, φCN = 0.01 in H2O (pH 7.2, phosphate buffer) and φpy = 0.04, φCN = 0.002 in Me2SO. The preference for py release obeys the prediction of the Vanquickenborne-Ceulemans, additive angular overlap model (AOM). A notable feature of this complex is that both types of ligands are π acceptors, and the π effect of py on bond labilization is evidenced by comparison with the photolysis of Cr(CN)5(NH3)2-. Irradiation of the intense UV absorption due to overlap of charge-transfer (CT) and π → π*, py localized transitions causes the increase of both quantum yields, suggesting the involvement of higher-energy states besides the LF ones. Co(sep)3+ (sep = 1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane = sepulchrate) quenches the phosphorescence (kq = 1.6 × 109M-1 s-1) but has no effect on the photoreaction efficiencies: the photochemistry is thus inferred to originate entirely from the lowest quartet excited state(s) in competition with intersystem crossing. The marked solvent effects on the absorption spectrum, on the emission behavior, on the thermal reactivity, on the photolysis quantum yields, and, in particular, on the φpy/φCNN ratio, are discussed in terms of the proneness of the cyanide ligand to either protonation or hydrogen bonding and of solvent orientation toward anionic complexes.

Notes

Cited By :8Export Date: 19 February 2015CODEN: INOCACorrespondence Address: Zinato, E.; Dipartimento di Chimica, Università di Perugia, 06123 Perugia, ItalyReferences: Shaap, W.B., Krishnamurthy, R., Wakefield, D.K., Coleman, W.F., (1969) Coordination Chemistry, p. 177. , Kirschner, S., Ed.; Plenum Press; New York;Chiang, A., Adamson, A.W., (1968) J. Phys. Chem., 72, p. 3827; Jeftić, L., Feldberg, S.W., (1970) J. Am. Chem. Soc., 92, p. 5272; Jeftić, L., Feldberg, S.W., (1971) J. Phys. Chem., 75, p. 2381; McCain, D.C., (1969) Inorg. Nucl. Chem. Lett., 5, p. 873; Wasgestian, F., (1972) J. Phys. Chem., 76, p. 1947; Marchaj, A., Wasgestian, F., (1985) Inorg. Chim. Acta, 102, pp. L13; Blasius, E., Augustin, H., Wenzel, U., (1970) J Chromatogr, 49, p. 520; Blasius, E., Augustin, H., (1975) Z. Anorg. Allg. Chem., 417, p. 47; Sakabe, Y., Matsumoto, Y., (1981) Bull. Chem. Soc. Jpn., 54, p. 1253; Riccieri, P., Zinato, E., (1990) Inorg. Chem., 29, p. 5035; Riccieri, P., Zinato, E., (1996) Inorg. Chem., 35, p. 974; Schlessinger, G.G., (1962) Inorganic Laboratory Preparations, , Chemical: New York; Schläfer, H.L., Wagener, H., Wasgestian, F., Herzog, G., Ludi, A., (1971) Ber. Bunsen-Ges. Phys. Chem., 75, p. 878; Sotomayor, J., Parola, A.J., Pina, F., Zinato, E., Riccieri, P., Manfrin, M.F., Moggi, L., (1995) Inorg. Chem., 34, p. 6532; Creaser, I.I., Geue, R.J., Harrowfield, J.M., Herlt, A.J., Sargeson, A.M., Snow, M.R., Springborg, J., (1982) J. Am. Chem. Soc., 104, p. 6016; Riccieri, P., Zinato, E., (1975) J. Am. Chem. Soc., 97, p. 6071; Wegner, E.E., Adamson, A.W., (1966) J. Am. Chem. Soc., 88, p. 394; Hatchard, C.G., Parker, C.A., (1956) Proc. R. Soc. London. Ser. A, 235, p. 518; Riccieri, P., Zinato, E., (1972) Z. Phys. Chem. (Munich), 79, p. 28; Barca, R., Ellis, J., Tsao, M.S., Wilmarth, W.K., (1967) Inrog. Chem., 2, p. 243; Vanquickenborne, L.G., Ceulemans, A., (1983) Coord. Chem. Rev., 48, p. 157; Glerup, J., Mønsted, O., Schäffer, C.E., (1976) Inorg. Chem., 15, p. 1399; Alexander, J.J., Gray, H.B., (1968) J. Am. Chem. Soc., 90, p. 4260; Wasielewska, E., (1986) Inorg. Chim. Acta, 122, pp. Ll; (1971) UV Atlas of Organic Compounds, , Verlag Chemie: Weinheim, Germany; Bakač, A., Orhanović, M., (1971) Inorg. Chem., 10, p. 2443; Lever, A.B.P., (1984) Inorganic Electronic Spectroscopy, p. 463. , Elsevier: Amsterdam; Wilzbach, K.E., Rausch, D.J., (1970) J. Am. Chem. Soc., 92, p. 2178; Andre, J.C., Niclause, M., Joussot-Dubien, J., Deglise, X., (1977) J. Chem. Educ., 54, p. 387; Zinato, E., Riccieri, P., Adamson, A.W., (1974) J. Am. Chem. Soc., 96, p. 375; Riccieri, P., Zinato, E., Damiani, A., (1987) Inorg. Chem., 26, p. 2667; Flint, C.D., Matthews, A.P., (1975) Inorg. Chem., 14, p. 1008; Ghaith, A.M., Forster, L.F., Rund, J.V., (1987) Inorg. Chem., 26, p. 2493; Smith, D.W., (1978) Inorg. Chem., 11, p. 3153; Glerup, J., Mønsted, O., Schäffer, C.E., (1980) Inorg. Chem., 19, p. 2855; Vanquickenborne, L.G., Ceulemans, A., (1977) J. Am. Chem. Soc., 99, p. 2208; Zinato, E., (1975) Concepts of Inorganic Photochemistry, , Adamson, A. W., Fleischauer, P. D., Eds.; Wiley: New York: Chapter 4; Kirk, A.D., (1981) Coord. Chem. Rev., 39, p. 225; Zink, J.I., (1972) J. Am. Chem. Soc., 94, p. 8039; (1973) Mol. Photochem., 5, p. 151; (1973) Inorg. Chem., 12, p. 1957; Wrighton, M., Gray, H.B., Hammond, G.S., (1973) Mol. Photochem., 5, p. 165; Adamson, A.W., (1967) J. Phys. Chem., 71, p. 798; Vanquickenborne, L.G., Ceulemans, A., (1978) J. Am. Chem. Soc., 100, p. 475; Vanquickenbome, L.G., Ceulemans, A., (1979) Inorg. Chem., 18, p. 3475; Marchaj, A., Stasicka, Z., Rehorek, D., (1983) Polyhedron, 2, p. 1281; Vincze, L., Friesen, D.A., Mezyk, S.P., Waltz, W.L., (1992) Inorg. Chem., 31, p. 4950; Friesen, D.A., Lee, S.H., Nashiem, R.E., Mezyk, S.P., Waltz, W.L., (1995) Inorg. Chem., 34, p. 4026; Sandrini, D., Gandolfi, M.T., Moggi, L., Balzani, V., (1978) J. Am. Chem. Soc., 100, p. 1463; Krause, H.H., Wasgestian, F., (1981) Inorg. Chim. Acta, 49, p. 231; Cimolino, M.C., Linck, R.G., (1981) Inorg. Chem., 20, p. 3499; Zinato, E., Adamson, A.W., Reed, J.L., Puaux, J.P., Riccieri, P., (1984) Inorg. Chem., 23, p. 1138; Kirk, A.D., (1993) Comments Inorg. Chem., 14, p. 89; Fleisedauer, P.D., Adamson, A.W., Sartori, G., (1972) Prog. Inorg. Chem., 17, p. 1; Jamieson, M.A., Serpone, N., Hoffman, M.Z., (1981) Coord. Chem. Rev., 39, p. 121; Jamieson, M.A., Serpone, N., Hoffman, M.Z., (1983) J. Am. Chem. Soc., 105, p. 2933; Friesen, D.A., Lee, S.H., Lilie, J., Waltz, W.L., Vincze, L., (1991) Inorg. Chem., 30, p. 1975; Jørgensen, C.K., (1971) Modem Aspects of Ligand Field Theory, , North Holland: Amsterdam; Riccieri, P., Zinato, E., (1981) J. Inorg. Nucl. Chem., 43, p. 739; Langford, C.H., Schear, T.M., (1984) Can. J. Chem., 62, p. 703; Zinato, E., Adamson, A.W., Riccieri, P.J., (1985) Phys. Chem., 89, p. 839; Glerup, J., Schäffen, C.E., (1976) Inorg. Chem., 15, p. 1408; Glover, S.G., Kirk, A.D., (1982) Inorg. Chim. Acta, 64, pp. L137; Kaizaki, S., Takemoto, H., (1990) Inorg. Chem., 29, p. 4960; Riccieri, P., Zinato, E., (1992) Polyhedron, 11, p. 71; Dannöhl-Fickler, R., Kelm, H., Wasgestian, F., (1975) J. Lumin., 10, p. 103; Adamson, A.W., (1966) J. Inorg. Nucl. Chem., 28, p. 1955; Wong, C.F.C., Kirk, A.D., (1976) Can. J. Chem., 54, p. 3794; Cusumano, M., Langford, C.K., (1978) Inorg. Chem., 17, p. 2222; Bergkamp, M.A., Walts, R.J., Ford, P.C., (1980) J. Am. Chem. Soc., 102, p. 2627; Parker, A.J., (1969) Chem. Rev., 69, p. 1; Mayer, U., (1976) Coord. Chem. Rev., 21, p. 129

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0006247163&partnerID=40&md5=f47fac7ed83321b75e6db6682eedf7a9
Citation Key5017