Sorry, you need to enable JavaScript to visit this website.

Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat

TitleCharacterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2006
AuthorsJanni, M., Di Giovanni M., Roberti S., Capodicasa Cristina, and D’Ovidio R.
JournalTheoretical and Applied Genetics
Pagination1233 - 1245
Date Published2006
ISBN Number00405752 (ISSN)
KeywordsAmino Acid Sequence, Amino acids, article, Base Sequence, Biochemical analyses, chromosome map, Chromosome Mapping, cluster analysis, comparative study, Database systems, Dicotyledoneae, DNA, DNA Primers, DNA sequence, Enzymes, gene expression profiling, Genes, Genetic engineering, Genetic variability, Genetic Variation, genetics, Grain, Grain (agricultural product), Leucine-rich repeat (LRR), Liliopsida, metabolism, Modular organization, molecular genetics, Molecular Sequence Data, nucleotide sequence, Oryza sativa, PGIP protein, Plant, Plant Proteins, Polygalacturonases, primer DNA, Proteins, Reverse Transcriptase Polymerase Chain Reaction, reverse transcription polymerase chain reaction, rice, Sequence Analysis, Triticum, Triticum aestivum, Variation (Genetics), vegetable protein, wheat

Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. A number of PGIPs have been characterized from dicot species, whereas only a few data are available from monocots. Database searches and genome-specific cloning strategies allowed the identification of four rice (Oryza sativa L.) and two wheat (Triticum aestivum L.) Pgip genes. The rice Pgip genes (Ospgip1, Ospgip2, Ospgip3 and Ospgip4) are distributed over a 30 kbp region of the short arm of chromosome 5, whereas the wheat Pgip genes, Tapgip1 and Tapgip2, are localized on the short arm of chromosome 7B and 7D, respectively. Deduced amino acid sequences show the typical LRR modular organization and a conserved distribution of the eight cysteines at the N- and C-terminal regions. Sequence comparison suggests that monocot and dicot PGIPs form two separate clusters sharing about 40% identity and shows that this value is close to the extent of variability observed within each cluster. Gene-specific RT-PCR and biochemical analyses demonstrate that both Ospgips and Tapgips are expressed in the whole plant or in a tissue-specific manner, and that OsPGIP1, lacking an entire LRR repeat, is an active inhibitor of fungal polygalacturonases. This last finding can contribute to define the molecular features of PG-PGIP interactions and highlights that the genetic events that can generate variability at the Pgip locus are not only limited to substitutions or small insertions/deletions, as so far reported, but can also involve variation in the number of LRRs. © 2006 Springer-Verlag.


Cited By :18Export Date: 29 September 2015CODEN: THAGACorrespondence Address: D’Ovidio, R.; Dipartimento di Agrobiologia e Agrochimica, Università Della Tuscia, Via San Camillo de Lellis, s.n.c., 01100 Viterbo, Italy; email: dovidio@unitus.itMolecular Sequence Numbers: GENBANK: AC084818, AC108762, AF159167, AF229249, AF229250, AF499451, AF529691, AF529693, AJ786408, AJ786409, AJ786410, AJ786411, AJ972660, AJ972661, AJ972662, AJ972663, AM180652, AM180653, AM180654, AM180655, AM180657, BJ280223, BJ285213, L09264, L26529, Y08618, Z48063;Chemicals/CAS: DNA Primers; PGIP protein, plant; Plant ProteinsReferences: Adams, K.L., Wendel, J.F., Polyploidy and genome evolution in plants (2005) Curr Opin Plant Biol, 8, pp. 135-141;Aguero, C.B., Uratsu, S.L., Greve, C., Powell, A.T., Labavitch, J.M., Meredith, C.P., Dandekar, A.M., Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene (2005) Mol Plant Pathol, 6, pp. 43-51; Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M., Dubcovsky, J., Hummel, D., Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates (2003) PNAS, 100, pp. 10836-10841; Anderson, P.A., Lawrence, G.J., Morrish, B.C., Ayliffe, M.A., Finnegan, E.J., Ellis, J.G., Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region (1997) Plant Cell, 9, pp. 641-651; Baulcombe, D., Chapman, S., Santa Cruz, S., Jellyfish green fluorescent protein as a reporter for virus infections (1995) Plant J, 7, pp. 1045-1053; Caprari, C., Mattei, B., Basile, M.L., Salvi, G., Crescenzi, V., De Lorenzo, G., Cervone, F., Mutagenesis of endopolygalacturonase from Fusarium moniliforme: Histidine residue 234 is critical for enzymatic and macerating activities and not for binding to polygalacturonase-inhibiting protein (PGIP) (1996) Mol Plant-Microbe Interact, 9, pp. 617-624; Cervone, F., De Lorenzo, G., Degrà, L., Salvi, G., Elicitation of necrosis in Vigna unguiculata Walp. by homogeneous Aspergillus niger endo-polygalacturonase and by a-D-galacturonate oligomers (1987) Plant Physiol, 85, pp. 626-630; D’Ovidio, R., Anderson, O.D., PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat quality (1994) Theor Appl Genet, 88, pp. 759-763; D’Ovidio, R., Raiola, A., Capodicasa, C., Devoto, A., Pontiggia, D., Roberti, S., Galletti, R., De Lorenzo, G., Characterization of the complex locus of Phaseolus vulgaris encoding polygalacturonase-inhibiting proteins (PGIPs) reveals sub-functionalization for defense against fungi and insects (2004) Plant Physiol, 135, pp. 2424-2435; D’Ovidio, R., Roberti, S., Di Giovanni, M., Capodicasa, C., Melaragni, M., Sella, L., Tosi, P., Favaron, F., The characterization of the soybean Pgip family reveals that a single members is responsible for the activity detected in soybean tissues (2006) Planta, , DOI 10.1007/s00425-006-0235-y; De Lorenzo, G., D’Ovidio, R., Cervone, F., The role of polygacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi (2001) Annu Rev Phytopathol, 39, pp. 313-335; Desiderio, A., Aracri, B., Leckie, F., Mattei, B., Salvi, G., Tigelaar, H., Van Roekel, J.S., Cervone, F., Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris (1997) Mol Plant-Microbe Interact, 10, pp. 852-860; Di Matteo, A., Federici, L., Mattei, B., Salvi, G., Johnson, K.A., Savino, C., De Lorenzo, G., Cervone, F., The crystal structure of PGIP (polygalacturonase-inhibiting protein), a leucine-rich repeat protein involved in plant defense (2003) Proc Natl Acad Sci USA, 100, pp. 10124-10128; Dixon, M.S., Hatzixanthis, K., Jones, D.A., Harrison, K., Jones, J.D.G., The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number (1998) Plant Cell, 10, pp. 1915-1926; Favaron, F., Gel detection of allium porrum polygalacturonase-inhibiting protein reveals a high number of isoforms (2001) Physiol Mol Plant Pathol, 58, pp. 239-245; Favaron, F., Castiglioni, C., D’Ovidio, R., Alghisi, P., Polygalacturonase inhibiting proteins from Allium porrum L. and protection of plant tissue from fungal endo-polygalacturonase degradation (1997) Physiol Mol Plant Pathol, 50, pp. 403-417; Favaron, F., Castiglioni, C., Di Lenna, P., Inhibition of some rot fungi polygalacturonases by Allium cepa L. and Allium porrum L. extracts (1993) J Phytopathol, 139, pp. 201-206; Federici, L., Di Matteo, A., Fernandez-Recio, J., Tsernoglou, D., Cervone, F., Polygalacturonase inhibiting proteins: Players in plant innate immunity? (2006) Trends Plant Sci, 11, pp. 65-70; Ferrari, S., Vairo, D., Ausubel, F.M., Cervone, F., De Lorenzo, G., Arabidopsis polygalacturonase-inhibiting proteins (PGIP) are regulated by different signal transduction pathways during fungal infection (2003) Plant Cell, 15, pp. 93-106; Harberd, N.P., Flavell, R.B., Thompson, R.D., Identification of a transposon-like insertion in a Glu-1 allele of wheat (1987) Mol Gen Genet, 209, pp. 326-332; Hossain, K.G., Kalavacharla, V., Lazo, G.R., Hegstad, J., Wentz, M.J., A chromosome bin map of 2,148 expressed sequence tag loci of wheat homoeologous group 7 (2004) Genetics, 168, pp. 687-699; Jang, S., Lee, B., Kim, C., Yim, J., Han, J.-J., Lee, S., Kim, S.-R., An, G., The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice (2003) Plant Mol Biol, 53, pp. 357-369; Jones, D.A., Jones, J.D.G., The roles of leucine rich repeats in plant defences (1997) Adv Bot Res, 24, pp. 90-167; Joppa, L.R., Williams, N.D., Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat (1988) Genome, 30, pp. 222-228; Kashkush, K., Feldman, M., Levy, A., Gene loss, silencing and activation in a newly synthesized wheat allotetraploid (2002) Genetics, 160, pp. 1651-1659; Kashkush, K., Feldman, M., Levy, A., Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat (2003) Nat Genet, 33, pp. 102-106; Kemp, G., Bergmann, C.W., Clay, R., Van Der Westhuizen, A.J., Pretorius, Z.A., Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat (2003) Mol Plant-Microbe Interact, 16, pp. 955-961; Kurata, N., Moore, G., Nagamura, Y., Foote, T., Yano, M., Minobe, Y., Gale, M., Conservation of genome structure between rice and wheat (1994) Bio/technology, 12, pp. 276-278; Leckie, F., Mattei, B., Capodicasa, C., Hemmings, A., Nuss, L., Aracri, B., De Lorenzo, G., Cervone, F., The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent-exposed β- strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability (1999) EMBO J, 18, pp. 2352-2363; Li, R., Rimmer, R., Yu, M., Sharpe, A.G., Seguin-Swartz, G., Lydiate, D., Hegedus, D.D., Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses (2003) Planta, 217, pp. 299-308; Lin, W., Li, Z., The partial structure of wheat polygalacturonase-inhibiting protein (2002) Zhongguo Shengwu Huaxue Yu Fenzi Shengwu Xuebao, 18, pp. 197-201; Manfredini, C., Sicilia, F., Ferrari, S., Pontiggia, D., Salvi, G., Caprari, C., Lorito, M., DeLorenzo, G., Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection (2005) Physiol Mol Plant Pathol, 67, pp. 108-115; Mattei, B., Bernalda, M.S., Federici, L., Roepstorff, P., Cervone, F., Boffi, A., Secondary structure and post-translation modifications of the leucine-rich repeat protein PGIP (polygalacturonase-inhibiting protein) from Phaseolus vulgaris (2001) Biochemistry, 40, pp. 569-576; McGinnis, S., Madden, T.L., BLAST: At the core of a powerful and diverse set of sequence analysis tools (2004) Nucleic Acids Res, 32, pp. W20-W25; Milner, Y., Avigad, G., A copper reagent for the determination of hexuronic acids and certain ketohexoses (1967) Carbohydr Res, 4, pp. 359-361; Oeser, B., Heidrichm, P.M., Muller, U., Tudzynski, P., Tenberge, K.B., Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction (2002) Fungal Genet Biol, 36, pp. 176-186; Parker, J.E., Coleman, M.J., Szabo, V., Frost, L.N., Schmidt, R., Van Der Biezen, E.A., Moores, T., Jones, J.D.G., The Arabidopsis Downy mildew resistance gene Rpp5 shares similarity to the Toll and INterleukin-1 receptors with N and L6 (1997) Plant Cell, 9, pp. 879-894; Powell, A.L., Van Kan, J., Ten Have, A., Visser, J., Greve, L.C., Bennett, A.B., Labavitch, J.M., Transgenic expression of pear PGIP in tomato limits fungal colonization (2000) Mol Plant-Microbe Interact, 13, pp. 942-950; Saitou, N., Nei, M., The Neighbor-Joining method: A new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4 (4), pp. 406-425; Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning, a Laboratory Manual, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor; Sears, E.R., Nullisomic-tetrasomic combination in hexaploid wheat (1966) Chromosome Manipulation and Plant Genetics, pp. 29-45. , Riley R, Lewis KR (eds). Oliver and Boyd, Edinburg; Sella, L., Castiglioni, C., Roberti, S., D’Ovidio, R., Favaron, F., An endo-polygalacturonase (PG) of Fusarium moniliforme escaping inhibition by plant polygalacturonase-inhibiting proteins (PGIPs) provides new insights into the PG-PGIP interaction (2004) FEMS Microbiol Lett, 240, pp. 117-124; Sneath, P., Sokal, R., (1973) Numerical Taxonomy, , Freeman, San Francisco; Sorrells, M.E., La Rota, M., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., Comparative DNA sequence analysis of wheat and rice genomes (2003) Genome Res, 13, pp. 1818-1827; Tai, T., Tanksley, S., A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue (1991) Plant Mol Biol Rep, 8, pp. 297-303; Thompson, J.D., Higgins, D.G., Gibson, T.J., Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680

Citation Key5442