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Abstract
The modal analysis and seismic response of a vibrating cantilever, with or with-
out tip mass and rotary inertia, are investigated in this study using a shear
deformable beammodel and including the effect of vertical load. Based on exist-
ing approaches, an original method is proposed that does not use fourth-order
uncoupled equations to determine modal deflection and rotation. In fact, the
approach presented herein transforms the second-order coupled system into a
first-order system which can be solved more easily using matrix algebra and
Laplace transform. Furthermore, the proposed form allows a straightforward
demonstration of orthogonality conditions, that is, the problem is self-adjoint,
and the solution in the case of forced response using modal superposition. In
addition, even if the solution presented herein is applicable only to the can-
tilever with a tip mass and rotary inertia, the scope is general, and the approach
can be applied to shear deformable beams with other boundary conditions.
Finally, the seismic response by modal superposition is shown, and some exam-
ples are proposed and discussed for the case of uniform or continuously varying
cross-sectional properties.
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1 INTRODUCTION

In the last decades, computational methods based on finite elements appears to allow the solution of any structural
problem to be obtained; however, “exact solutions” obtained by continuous models remain essential as they enable a
significant reduction of computational effort, allow a deeper understanding of the structural behavior and serve as bench-
mark solutions for numerical procedures. Therefore, the dynamics of systems with distributed mass and elasticity retains
its importance, particularly for simple structures.1–4
The transverse vibration of beams under various boundary conditions using continuous models has been investigated

since the introduction of structural beam theories; in this regard Han et al.5 provided a comprehensive review of the lit-
erature on this subject. One of the first models is the Euler-Bernoulli model, which is based on the relationship between
moment and curvature. The vibration problem of beams using this model includes the kinetic energy related to the dis-
placement and strain energy caused by bending. The model, which is more rigid than the actual behavior, overestimates
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2 SAITTA

NOVELTY

In this paper, an original approach is used to propose a complete modal analysis for the vibrating compressed can-
tilever Timoshenko beamwith or without tip mass having a rotary moment of inertia, assuming large deflections.
Instead of solving the fourth-order uncoupled equations for modal deflection and rotation, in the approach pre-
sented in this paper, the second-order coupled system is rewritten in a first-order form which can be solved more
easily by resorting to matrix algebra and Laplace transform. A closed-form solution for modal shapes is derived
and applications to seismic analysis are shown.

the frequencies. A more advanced model was proposed by Rayleigh, which included the effect of kinetic energy due to
rotation. However, a significant advancement in beam theories was reflected in the model proposed by Timoshenko6,
which includes rotary inertia and shear deformability. As highlighted recently,7 a contribution in the development of the
model was given also by Ehrenfest.8 This model is used in this study. Notably, Traill-Nash and Collar9 derived the frequen-
cies and modes of a uniform beamwithout axial force for three types of support. For the same problem, Dolph10 proposed
a solution for the cases of pinned-pinned and free-free end conditions, and established orthogonality conditions. Modal
solutions derived differently were proposed by Huang,11 who used the two fourth-order differential equations, that is, one
for bending rotation and one for deflection, to obtain frequencies and modes. Abramovich and Elishakoff12 derived the
frequency equation for 10 sets of boundary conditions while considering the individual contributions of shear deforma-
tion and rotary inertia but omitting their joint contributions. More recently, Han et al.5 provided a complete treatment
on the evaluation of frequencies and modal shapes based on four beam models, that is, Euler Bernoulli, Rayleigh, Tim-
oshenko and shear-beam (with shear deformability but without rotary inertia). This paper discusses orthogonality so as
the response by modal superposition. None of the aforementioned studies include the axial effect, which is relevant in
many practical engineering situations.
The effect of the axial force in a Timoshenko beam is included in the study of Kounadis,13 which considers a follower

force. Sato14 derived the complete equations of motion for a cantilever beam in the presence of a tip force directed in
the beam-deflected axis. He used the extended Hamilton’s principle and assumed that the angle of the deflected axis line
with respect to the undeflected line was sufficiently small such that the cosine of that angle was approximately one. This
implies that large deflections were considered with small rotation angles; therefore, the difference between the force and
its vertical component was negligible.
The same equations were used by Abramovich15 to derive the characteristic equation for an axially compressed

Timoshenko beam under 10 couples of boundary conditions. The solution was obtained by integrating the uncoupled
fourth-order equations for deflection and rotation and by imposing the boundary conditions by which deflection and
rotation were coupled. No closed-form solutions for the modal shapes were presented.
Another noteworthy problem in practical engineering is a cantilever with a lumped mass and rotary inertia at the

free end. The Euler-Bernoulli beam, even in the non-homogeneous case, has been applied in many works,2,16–19 whereas
Timoshenko beams were considered in other studies.20–22 Manolis and Dadoulis17 proposed a study on the dynamics
of a pylon with an attached mass using an Euler-Bernoulli beam with axial deformability. Additionally, they proposed
an alternative method to consider the lumped mass directly in the equations of motion, where the Dirac delta function
was used instead of applying the mass contribution in the boundary conditions. This approach, although mathematically
complicated initially, allows the problem to be solved easily and thus is applied in this study.
This study uses an original approach to propose a complete modal analysis for a vibrating compressed cantilever Tim-

oshenko beam (with or without a tip mass) with a rotary moment of inertia and the assumption of large deflections. The
compressive loads are assumed to act vertically, that is, no follower forces are considered. In all the approaches men-
tioned in the literature, to the best of the author’s knowledge, fourth-order uncoupled equations were used to determine
themodal deflection and rotation. Subsequently, the constants were determined based on boundary conditions. After fully
non-dimensional equations are derived, the approach presented herein transforms the second-order coupled system into
a first-order system, which can be solved more easily using matrix algebra and Laplace transform. Instead of being con-
sidered in the boundary conditions, the lumped mass is included in the equations using the Dirac delta function, as was
performed for the Euler-Bernoulli beam by Manolis and Dadoulis.17 The proposed form allows a straightforward demon-
stration of orthogonality conditions, that is, the problem is self-adjoint, and the solution in the case of forced response using
modal superposition. In addition, the closed-form expression of modal shapes for uniform beam properties is derived, and
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SAITTA 3

F IGURE 1 Schematic representation of the cantilever beam and reference system (A); internal forces (B).

a Galerkin approach is presented for non-uniform beam properties. The solution presented herein is applicable only to a
cantilever beam with a tip mass, but the scope is more general, which allows the approach to be applied to beams with
other boundary conditions. Finally, the solutions by modal superposition for the seismic base excitation of bridge piers
with uniform and variable cross sections are presented and compared with finite element (FE) solutions.

2 EQUATION OFMOTION

Let us consider a vertical cantilever beam with a reference system (as depicted in Figure 1A), subjected to transversal
forces 𝑓𝑦(x,t), vertical time-independent distributed forces 𝑓𝑥(x) (positive in tension based on the reference system in the
figure, although we assume that they are always negative), inertia transversal forces, and rotary moments. The equations
of motion representing the dynamic equilibrium in the displaced configuration, written in terms of deflection 𝑣(𝑥, 𝑡) and
bending rotation 𝜑(𝑥, 𝑡), can be derived as reported by Sato14 using the extended Hamilton’s principle. The fundamental
hypothesis is that the angle 𝜗 of rotation of the deflected axis line with respect to the undeformed one is sufficiently
small such that the approximations 𝑐𝑜𝑠𝜗 ≅ 1 and 𝑠𝑖𝑛𝜗 ≅ 𝜗 are acceptable, that is, we assume large displacements but
small rotations. Notably, 𝜗 is composed of bending rotation and a shear deflection angle. Analogously, the equations can
be derived under the same assumptions based on equilibrium and compatibility considerations,23 as discussed briefly
herein.
Concerning the beam element illustrated in Figure 1B, the components of the internal shear and axial forces S(x,t) and

N(x,t), respectively, can be related to the components directed along the vertical and transverse directions, P(x) andQ(x,t),
respectively, as follows:

𝑁 = 𝑃𝑐𝑜𝑠𝜗 + 𝑄𝑠𝑖𝑛𝜗 𝑆 = 𝑄𝑐𝑜𝑠𝜗 − 𝑃𝑠𝑖𝑛𝜗 (1)

Considering the previously mentioned hypotheses regarding the deflection angle, we obtain:

𝑁 = 𝑃 + 𝑄
𝜕𝑣

𝜕𝑥
𝑆 = 𝑄 − 𝑃

𝜕𝑣

𝜕𝑥
(2)

Considering the equilibrium of the beam element (Figure 2B) we obtain:

𝜕𝑄

𝜕𝑥
+ 𝑓𝑦 (𝑥, 𝑡) − 𝑚 (𝑥)

𝜕2𝑣

𝜕t2
= 0

𝑑𝑃

𝑑𝑥
+ 𝑓𝑥 (𝑥) = 0

𝜕𝑀

𝜕𝑥
+ 𝑃

𝜕v

𝜕𝑥
− 𝑄 + 𝐽 (𝑥)

𝜕2𝜑

𝜕t2
= 0 (3)

where𝑚(𝑥) is the mass, and 𝐽 (𝑥) = 𝑚(𝑥)𝐼(𝑥)∕𝐴(𝑥) is the mass moment of inertia per unit length,𝐴(𝑥) the cross-section
area, and 𝐼(𝑥) the moment of inertia.
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4 SAITTA

F IGURE 2 Frequency versus β/γ and γ/μ, in the case of uniform beam properties and 𝜌 = 𝜎 = 0: first mode (A); second mode (B);
third mode (C); fourth mode (D).

We assume that the structure is statically determinate for vertical actions, thus, P(x) is known. Therefore, only the first
and third equations of Equation (3) are relevant. The compatibility and constitutive equations lead to the following:

𝑆 = 𝐺�̃�

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
𝑀 = −𝐸𝐼

𝜕𝜑

𝜕𝑥
(4)

Here, 𝐺�̃� is the shear rigidity (�̃� is the area reduced by the shear factor), and 𝐸𝐼 is the flexural stiffness. Substituting
the first equation of Equation (4) into the second equation of Equation (2) yields:

𝑄 = 𝐺�̃�

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+ 𝑃

𝜕𝑣

𝜕𝑥
(5)

Substituting the equation above and the second of Equation (4) into Equation (3) yields the following equations:

𝜕

𝜕𝑥

[
G�̃� (𝑥)

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+ 𝑃 (𝑥)

𝜕𝑣

𝜕𝑥

]
+ 𝑓𝑦 (𝑥, 𝑡) − 𝑚 (𝑥)

𝜕2𝑣

𝜕𝑡2
= 0 (6)

G�̃� (𝑥)

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+

𝜕

𝜕𝑥

(
𝐸𝐼 (𝑥)

𝜕𝜑

𝜕𝑥

)
− 𝐽 (𝑥)

𝜕2𝜑

𝜕t2
= 0 (7)

Compared with the equations reported by Sato14, Equation (6) contains a vertical internal force term, whereas in the
cited paper, the force tangent to the deflected axis is considered; they are equivalent within the assumed hypothesis of a
small rotation angle.
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SAITTA 5

The boundary conditions at the free end, in terms of the horizontal component of the internal action and moment, are:

𝑄 (𝐿) =

[
𝐺�̃� (𝑥)

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+ 𝑃 (𝑥)

𝜕𝑣

𝜕𝑥

]
𝐿

= 0 (8)

𝑀 (𝐿) =

[
−𝐸𝐼 (𝑥)

𝜕𝜑

𝜕𝑥

]
𝐿

= 0 (9)

The case in which a lumped mass �̃� and related rotary inertia 𝐽 are present at the top can be addressed by modifying
the boundary conditions as follows: [

𝐺�̃� (𝑥)

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+ 𝑃 (𝑥)

𝜕𝑣

𝜕𝑥

]
𝐿

= −�̃�

[
𝜕2𝑣

𝜕𝑡2

]
𝐿

(10)

[
−𝐸𝐼 (𝑥)

𝜕𝜑

𝜕𝑥

]
𝐿

= 𝐽

[
𝜕2𝜑

𝜕t2

]
𝐿

(11)

However, to verify that the system is self-adjoint such that the equations of motion can be decoupled in the modal
space, it is more convenient to consider the mass extremely close to the boundary but internal to the domain of spatial
integration. Thus, the boundary conditions shown in Equations (8)–(9) are preserved, whereas the equations of motion
are written as

𝜕

𝜕𝑥

[
G�̃� (𝑥)

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+ 𝑃 (𝑥)

𝜕𝑣

𝜕𝑥

]
+ 𝑓𝑦 (𝑥, 𝑡) − [𝑚 (𝑥) + �̃�𝛿 (𝑥 − 𝐿)]

𝜕2𝑣

𝜕𝑡2
= 0 (12)

G�̃� (𝑥)

(
𝜕𝑣

𝜕𝑥
− 𝜑

)
+

𝜕

𝜕𝑥

(
𝐸𝐼 (𝑥)

𝜕𝜑

𝜕𝑥

)
− [𝐽 (𝑥) + 𝐽𝛿 (𝑥 − 𝐿)]

𝜕2𝜑

𝜕𝑡2
= 0 (13)

In Equations (12) and (13) above, 𝛿(⋅) is the Dirac delta function that allows us to apply the lumped mass inertia force
at 𝑥 = 𝐿. This is merely a mathematical artifice to achieve our goal. Equations (12) and (13) can be written in non-
dimensional forms, that is,

𝜕

𝜕�̂�

[
𝛼 (�̂�)

(
𝜕𝑣

𝜕�̂�

)
− 𝜖 (�̂�) 𝜑

]
+ 𝑓𝑦

(
�̂�, 𝑡

)
− [𝛽 (�̂�) + 𝜇 𝛿 (�̂� − 1)]

𝜕2𝑣

𝜕𝑡2
= 0 (14)

𝜖 (�̂�)

(
𝜕𝑣

𝜕�̂�
− 𝜑

)
+

𝜕

𝜕�̂�

(
𝛾 (�̂�)

𝜕𝜑

𝜕�̂�

)
− [𝜌 (�̂�) + 𝜎 𝛿 (�̂� − 1)]

𝜕2𝜑

𝜕𝑡2
= 0 (15)

using the following normalized quantities:

𝑣 =
𝑣

𝐿
𝑡 = 𝜈0 𝑡 �̂� =

𝑥

𝐿
𝛼 (�̂�) =

𝐺�̃� (�̂� 𝐿) + 𝑃 (�̂� 𝐿)

𝐺�̃�(𝑟)
𝛽 (�̂�) =

𝑚 (�̂� 𝐿) 𝐿2𝜈20

𝐺�̃�(𝑟)

𝛾 (�̂�) =
𝐸𝐼 (�̂� 𝐿)

𝐿2𝐺�̃�(𝑟)
𝜖 (�̂�) =

𝐺�̃� (�̂� 𝐿)

𝐺�̃�(𝑟)
𝜇 =

�̃�𝐿𝜈20

𝐺�̃�(𝑟)
𝜌 (�̂�) =

𝐽 (�̂� 𝐿) 𝜈20

𝐺�̃�(𝑟)

𝜎 =
𝐽𝜈20

𝐿 𝐺�̃�(𝑟)
𝑓𝑦

(
�̂�, 𝑡

)
= 𝑓𝑦

(
�̂�𝐿,

𝑡

𝜈0

)
𝐿

𝐺�̃�(𝑟)
(16)

where 𝜈0 is the reference frequency, which is assumed to be unitary, and 𝐺�̃�(𝑟) is the reference value for shear stiff-
ness. In the case of seismic motion at the base, as will be shown in Section 6, the dimensional force is 𝑓𝑦 (𝑥, 𝑡) =
−[𝑚(𝑥) + �̃�𝛿(𝑥 − 𝐿)]𝑣𝑔(𝑡). Considering the latter equation shown in Equation (16) and position 𝑣𝑔 (𝑡) = 𝐿𝜈2

0
ˆ̈𝑣𝑔(𝑡), we

obtain:

𝑓𝑦
(
𝑥, �̂�

)
= −

[
𝑚 (𝑥 𝐿) 𝐿2 + �̃�𝐿𝛿 (𝑥 − 1)

]
𝜈20
ˆ̈𝑣𝑔

(
�̂�
)

𝐺�̃�(𝑟)
= − [𝛽 (𝑥) + 𝜇 𝛿 (𝑥 − 1)] ˆ̈𝑣𝑔

(
�̂�
)

(17)
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6 SAITTA

The boundary conditions can be rewritten using non-dimensional quantities as follows:

𝑣
(
0, 𝑡

)
= 0 𝜑

(
0, 𝑡

)
= 0

[
𝜕𝜑

𝜕�̂�

]
�̂�= 1

= 0

[
𝛼 (�̂�)

𝜕𝑣

𝜕�̂�
− 𝜖 (�̂�) 𝜑

]
�̂�= 1

= 0 (18)

For completeness, the boundary conditions to be used if Dirac delta is not introduced are as follows:

𝑣
(
0, 𝑡

)
= 0 𝜑

(
0, 𝑡

)
= 0 − 𝛾 (�̂�)

[
𝜕𝜑

𝜕�̂�

]
�̂�=1

= 𝜎

[
𝜕2𝜑

𝜕𝑡2

]
�̂�=1

[
𝛼 (�̂�)

𝜕𝑣

𝜕�̂�
− 𝜖 (�̂�) 𝜑

]
�̂�=1

= − 𝜇

[
𝜕2𝑣

𝜕𝑡2

]
�̂�=1

(19)

As far as we said, only Equation (18) are used, whereas 𝜇 and 𝜎 are considered in the equations of motion using the
Dirac delta function.

3 MODAL ANALYSIS

Omitting the hat to simplify the non-dimensional variables, the following compact form for the homogeneous problem
can be written:

𝐮 + �̈� =

[
0

0

]
(20)

where displacement and rotation are compacted in vector form 𝐮 (𝑥, 𝑡) =

[
𝑣(𝑥, 𝑡)

𝜑(𝑥, 𝑡)

]
and the differential operators

 and are introduced, which are expressed as:

 =

⎡⎢⎢⎢⎣
𝜕

𝜕x

[
𝛼 (𝑥)

𝜕

𝜕x
⋅
]

−
𝜕

𝜕x
[ε (𝑥) ⋅]

ε (𝑥)
𝜕

𝜕x
⋅

𝜕

𝜕x

[
𝛾
𝜕

𝜕x
⋅
]
− ε (𝑥) ⋅

⎤⎥⎥⎥⎦
 =

[
− [𝛽 (𝑥) + 𝜇 𝛿 (𝑥 − 1)] ⋅ 0

0 − [𝜌 (𝑥) + 𝜎 𝛿 (𝑥 − 1)] ⋅

] (21)

Subsequently, solutions are obtained via variable separation as follows:

𝐮 (𝑥, 𝑡) = 𝚿 (𝑥) 𝑞 (𝑡) (22)

where the same time evolution is assumed for the two modal functions 𝚿 (𝑥) = [
𝑉(𝑥)

Φ(𝑥)
] related to the displacement and

bending rotation. Substituting Equation (22) into Equation (20) and denoting the x-derivative by prime for simplicity
yields:

⎡⎢⎢⎣
[
𝛼 (𝑥)𝑉′ (𝑥)

]
′ − [ε (𝑥)Φ (𝑥)]

′

ε (𝑥) 𝑉′ (𝑥) +
[
𝛾 (𝑥)Φ′ (𝑥)

]′
− ε (𝑥)Φ (𝑥)

⎤⎥⎥⎦ 𝑞 (𝑡) +
[
− [𝛽 (𝑥) + 𝜇𝛿 (𝑥 − 1)] 𝑉 (𝑥)

− [𝜌 (𝑥) + 𝜎 𝛿 (𝑥 − 1)]Φ (𝑥)

]
𝑞 (𝑡) =

[
0

0

]
(23)

Based on the first and second equations, the x- and t-dependent functions can be separated as follows:[
𝛼𝑉′ (𝑥)

]
′ − [ε (𝑥)Φ (𝑥)]

′

[𝛽 (𝑥) + 𝜇𝛿 (𝑥 − 1)] 𝑉 (𝑥)
=
𝑞 (𝑡)

𝑞 (𝑡)
(24)

ε (𝑥) 𝑉′ (𝑥) +
[
𝛾 (𝑥)Φ′ (𝑥)

]′
− ε (𝑥)Φ (𝑥)

[𝜌 (𝑥) + 𝜎 𝛿 (𝑥 − 1)]Φ (𝑥)
=
𝑞 (𝑡)

𝑞 (𝑡)
(25)

 10969845, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.3881 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SAITTA 7

For the previously equations to be valid for all x and t, they must be constant. Therefore, we assume 𝑞(𝑡)∕𝑞(𝑡) = −𝜔2 .
Thus, the time evolution is governed by:

𝑞 (𝑡) + 𝜔2𝑞 (𝑡) = 0 (26)

with frequency ω determined by imposing boundary conditions. Moreover, the spatial problem is expressed as:[
𝛼 (𝑥)𝑉′ (𝑥)

]′
− [ε (𝑥)Φ (𝑥)]

′
+ 𝜔2 [𝛽 (𝑥) + 𝜇𝛿 (𝑥 − 1)] 𝑉 (𝑥) = 0

ε (𝑥)𝑉′ (𝑥) +
[
𝛾 (𝑥)Φ′ (𝑥)

]′
− ε (𝑥)Φ (𝑥) + 𝜔2 [𝜌 (𝑥) + 𝜎 𝛿 (𝑥 − 1)]Φ (𝑥) = 0

(27)

The latter is a second-order system of linear differential equations, with variable coefficients, which can be more easily
solved after reduction to a first-order system. Finally, previous studies pertaining to shear deformable beams, as cited in
the introduction, do not adhere to the procedure shown herein to determine the modal shapes.
Let us define two new variables,𝑊(𝑥) = 𝑉′ (𝑥) and Ψ(𝑥) = Φ′ (𝑥). Therefore, Equation (27) can be rewritten as

[𝛼 (𝑥)𝑊 (𝑥)]
′
− [ε (𝑥)Φ (𝑥)]

′
+ 𝜔2 [𝛽 (𝑥) + 𝜇 𝛿 (𝑥 − 1)] 𝑉 (𝑥) = 0

ε (𝑥)𝑊 (𝑥) + [𝛾 (𝑥)Ψ (𝑥)]
′
− ε (𝑥)Φ (𝑥) + 𝜔2 [𝜌 (𝑥) + 𝜎 𝛿 (𝑥 − 1)]Φ (𝑥) = 0

(28)

In matrix form:

𝐲′ (𝑥) = 𝐇 (x) 𝐲 (𝑥) (29)

Omitting the argument of the functions for simplicity yields

𝐇 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−
[𝛽 + 𝜇𝛿 (𝑥 − 1)] 𝜔2

𝛼

ε′

𝛼
−
𝛼′

𝛼

ε

𝛼

0
ε − [𝜌 + 𝜎 𝛿 (𝑥 − 1)] 𝜔2

𝛾
−
ε

𝛾
−
𝛾′

𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐲 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑉 (𝑥)

Φ (𝑥)

𝑊 (𝑥)

Ψ (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎦
(30)

Equation (29) can be solved using the matrix exponential approach only if 𝐇(𝑥) commutes with its integral.24 This is
applicable to constant or symmetric matrices but not to general cases. When the uniform beam properties are considered,
𝛼′ = ε′ = 𝛾′ = 0 and ε = 1. This case is discussed in this section. Meanwhile, some treatments for non-uniform beams
are explained in the next sections.
As will be shown later, it is more convenient to separate the constant component of the matrix from the contributions

related to the lumped mass. This can be achieved by expressing𝐇 as the sum of the following matrices:

𝐇 (𝑥) = 𝐇0 −
𝜇𝛿 (𝑥 − 1) 𝜔2

𝛼
𝐇1 −

𝜎𝛿 (𝑥 − 1) 𝜔2

𝛾
𝐇2 (31)

where:

𝐇0 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−
𝛽𝜔2

𝛼
0 0

1

𝛼

0
1 − 𝜌𝜔2

𝛾
−
1

𝛾
0

⎤⎥⎥⎥⎥⎥⎥⎦
𝐇1 =

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
𝐇2 =

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

⎤⎥⎥⎥⎥⎦
(32)

Before addressing the complete problem, let us consider the case without a concentrated mass (𝜇 = 𝜎 = 0). Using the
matrix exponential, the solution is expressed as follows:

𝐲 (𝑥) = 𝑒𝐇0𝑥 𝐜 (33)
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8 SAITTA

where 𝐜 = 𝐲 (0) = [ 𝑐1 𝑐2 𝑐3 𝑐4 ]
𝑇
denotes a constant vector. According to the properties of the matrix exponential, the

solution can be simplified as follows:

𝑒𝐇0𝑥 = 𝚯𝑒𝚲𝑥𝚯−1 (34)

In Equation (34), 𝚯 is the matrix whose columns are eigenvectors of matrix𝐇0, and Λ is the diagonal matrix of eigen-
values, such that 𝐇0 = 𝚯Λ𝚯−1. Thus, the exponential is calculated as for scalar quantities. The eigenvalues of 𝐇0 were
derived in an ordinary manner via some manipulations, that is,

𝚲 =

⎡⎢⎢⎢⎢⎣
𝑖 𝑎 0 0 0

0 −𝑖 𝑎 0 0

0 0 𝑏 0

0 0 0 −𝑏

⎤⎥⎥⎥⎥⎦
(35)

where:

𝑎 =

√
[1+(βγ+𝛼𝜌)𝜔2−𝛼]+

√
[1+(βγ+𝛼𝜌)𝜔2−𝛼]

2
+4 αβ𝛾𝜔2(1−𝜌𝜔2)

2𝛼𝛾

𝑏 =

√
−[1+(βγ+𝛼𝜌)𝜔2−𝛼]+

√
[1+(βγ+𝛼𝜌)𝜔2−𝛼]

2
+4 αβ𝛾𝜔2(1−𝜌𝜔2)

2𝛼𝛾

(36)

For practical purposes, a and b are real. Thus, the eigenvector matrix and its inverse are written as follows:

𝚯 =

⎡⎢⎢⎢⎢⎢⎣

−𝑟∕𝑎 −𝑟∕𝑎 𝑠∕𝑏 𝑠∕𝑏

−𝑖 𝑖 1 −1

−𝑖 𝑟 𝑖 𝑟 𝑠 −𝑠

𝑎 𝑎 𝑏 𝑏

⎤⎥⎥⎥⎥⎥⎦
𝚯−1 =

1

2𝛾 (𝑎2 + 𝑏2)

⎡⎢⎢⎢⎢⎢⎢⎣

−γa𝑏2∕𝑝 −𝑖 𝑠 𝑖 𝑎𝛾𝑠∕𝑝

−γa𝑏2∕𝑝 𝑖 𝑠 −𝑖 𝑎𝛾𝑠∕𝑝

γa2𝑏∕𝑝 𝑟 −1 𝑏𝛾𝑟∕𝑝

γa2𝑏∕𝑝 −𝑟 1 𝑏𝛾𝑟∕𝑝

⎤⎥⎥⎥⎥⎥⎥⎦
(37)

with 𝑟 = 1 + 𝛾𝑎2 − 𝜌𝜔2, 𝑠 = 1 − 𝛾𝑏2 − 𝜌𝜔2 and 𝑝 = 1 − 𝜌𝜔2.
In the previous matrices, i is an imaginary unit. In addition, 𝑟, 𝑠, 𝑝, 𝑎, and 𝑏, are dependent on 𝜔. The complex eigen-

values and eigenvectors form conjugate pairs. Therefore, using the Euler formula in Equation (34) allows one to write the
solution based on real quantities using trigonometric expressions, as will be shown later. In the general case involving a
top mass Equation (29) can be rewritten by considering Equations (31) and (34) as follows:

𝐲′ (𝑥) =

[
𝚯Λ𝚯−1 −

𝜇𝛿 (𝑥 − 1) 𝜔2

𝛼
𝐇1 −

𝜎𝛿 (𝑥 − 1)𝜔2

𝛾
𝐇2

]
𝐲 (𝑥) (38)

Performing a Laplace transform on both sides of the equation above and applying the properties of the Dirac delta25
yields

𝑠𝐘 (𝑠) − 𝐲 (0) = 𝚯Λ𝚯−1𝐘 (𝑠) −
𝜇𝜔2

𝛼
𝐇1 𝑒

−𝑠𝐲 (1) −
𝜎𝜔2

𝛾
𝐇2 𝑒

−𝑠𝐲 (1) (39)

Pre-multiplying by 𝚯−1 on both sides of the equation above and applying 𝐙 (s) = 𝚯−1𝐘(𝑠) yields:

𝑠𝐙 (𝑠) − 𝚯−1𝐲 (0) = 𝚲𝐙 (𝑠) −
𝜇𝜔2

𝛼
𝚯−1𝐇1 𝑒

−𝑠𝐲 (1) −
𝜎𝜔2

𝛾
𝚯−1𝐇2 𝑒

−𝑠𝐲 (1) (40)

By some manipulations, we obtain:

𝐙 (𝑠) = (𝑠𝐈 − 𝚲)
−1
𝚯−1𝐲 (0) −

𝜇𝜔2

𝛼
(𝑠𝐈 − 𝚲)

−1
𝚯−1𝐇1 𝑒

−𝑠𝐲 (1) −
𝜎𝜔2

𝛾
(𝑠𝐈 − 𝚲)

−1
𝚯−1𝐇2 𝑒

−𝑠𝐲 (1) (41)
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SAITTA 9

Hence, 𝑠𝐈 − 𝚲 is diagonal, and the inverse Laplace transform can be calculated as for scalar quantities. By performing
an inverse transformation, we obtain

𝐳 (𝑥) = 𝑒𝚲𝑥 𝚯−1𝐲 (0) −
𝜇𝜔2

𝛼
𝑒𝚲(𝑥−1)𝑈 (𝑥 − 1)𝚯−1𝐇1𝐲 (1) −

𝜎𝜔2

𝛾
𝑒𝚲(𝑥−1)𝑈 (𝑥 − 1)𝚯−1𝐇2 𝐲 (1) (42)

In Equation (42), 𝑈(𝑥) is the unit-step Heaviside function, defined as 1 for 𝑥 ≥ 1 and 0 otherwise. Finally,

𝐲 (𝑥) = 𝚯𝑒𝚲𝑥𝚯−1𝐲 (0) −

(
𝜎𝜔2

𝛾
𝐇2 +

𝜇𝜔2

𝛼
𝐇1

)
𝑈 (𝑥 − 1) 𝐲 (1) (43)

This equation can be expressed in terms of the constants 𝐲(0) only, that is, eliminating 𝐲(1), as follows:(
𝐈 +

𝜎𝜔2

𝛾
𝐇2 +

𝜇𝜔2

𝛼
𝐇1

)
𝐲 (1) = 𝚯𝑒𝚲𝚯−1𝐲 (0) (44)

The matrix in brackets on the left-hand side is invertible, and its inverse is: 𝐈 − 𝜎𝜔2

𝛾
𝐇2 −

𝜇𝜔2

𝛼
𝐇1 . Additionally,𝐇𝑖 𝐇𝑗 =

𝟎 (i,j = 1,2). By some manipulations, the spatial solution can be written in closed form as follows:

𝐲 (𝑥) =

[
𝚯𝑒𝚲𝑥𝚯−1 −

(
𝜇𝜔2

𝛼
𝐇1 +

𝜎𝜔2

𝛾
𝐇2

)
𝑈 (𝑥 − 1)𝚯𝑒𝚲𝚯−1

]
𝐲 (0) (45)

As shown in Equations (35) and (37), the complex eigenvalues and eigenvectors of 𝐇0 form conjugate pairs. There-
fore, using the Euler formula in Equation (45) allows one to write the solution as a function of real quantities using
trigonometric functions.
The boundary conditions in Equations (18) allows one to write four equations that permit the evaluation of frequencies

and constants 𝑐𝑖 , as follows:

𝑉 (0) = 𝑐1 = 0

Φ (0) = 𝑐2 = 0

𝛼𝑊 (1) − Φ (1) = 0

−𝛾 Ψ (1) = 0

(46)

𝜀 = 1 has been set in the third of Equation (46), since in this case a beam with uniform cross-section is considered. The
four equations can be expressed in matrix form as follows:

𝐃𝐜 = 0 (47)

The solutions are those that respect the nil determinant condition

Det 𝐃 =
{[
(1 − 𝑟𝛼) cos 𝑎 − (1 − 𝑠𝛼) cosh 𝑏 + 𝑟𝜇𝜔2 sin 𝑎∕𝑎 − 𝑠𝜇𝜔2 sinh 𝑏∕𝑏

]
[
𝑎2𝑠𝛾 cos 𝑎 + 𝑏2𝑟𝛾 cosh 𝑏 − 𝑎𝑠𝜎𝜔2 sin 𝑎 − 𝑏𝑟𝜎𝜔2 sinh 𝑏

]
+
[
−𝑟𝑠𝜇𝜔2 (cos 𝑎 − cosh 𝑏) + (1 − 𝑟𝛼) 𝑎𝑠 sin 𝑎 + (1 − 𝑠𝛼) 𝑏𝑟 sinh 𝑏

]
[
𝜎𝜔2 (cos 𝑎 − cosh 𝑏) + 𝛾 (𝑎 sin 𝑎 + 𝑏 sinh 𝑏)

]}
∕
[(
𝑎2 + 𝑏2

)2
𝑝𝛾2

]
= 0 (48)

In the equation above, the latter is the characteristic equationwhose solution provides the structural frequencies, where
a, b, r, and s depend on ω. Vector c satisfies Equation (47) for each frequency obtained. One of the non-zero constants is
arbitrary. Assuming 𝑐3 = 1, 𝑐4 can be obtained as follows:

𝑐4 =
𝑝
(
𝜎𝜔2 cos 𝑎 − 𝜎𝜔2 cosh 𝑏 + 𝑎𝛾 sin 𝑎 + 𝑏𝛾 sinh 𝑏

)
𝛾 [𝑎2𝑠𝛾 cos 𝑎 + 𝑏2𝑟𝛾 cosh 𝑏 − 𝜎𝜔2 (𝑎𝑠 sin 𝑎 + 𝑏𝑟 sinh 𝑏)]

(49)
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10 SAITTA

F IGURE 3 Fundamental period versus β/γ, for various γ/μ, in the case of uniform beam properties and 𝜌 = 𝜎 = 0.

F IGURE 4 Frequency of first mode versus γ/μ, for vertical load ranging from 0 to 0.8 of the critical one, at β/γ = 0.001 (continuous line),
β/γ = 0.005 (dashed line), β/γ = 0.01 (dot-dashed line), and β/γ = 0.05 (dotted line).

In the equation above, the latter is the solution for 𝑐4 using the third equation of Equation (46), and using the fourth
equation, of Equation (46), another expression for 𝑐4 can be derived, that is, equivalent to the reported one, which is
associated with the characteristic Equation (48).
Finally, the closed-form expression for modal shapes is obtained as follows:

𝑉 (𝑥)
(
𝑎2 + 𝑏2

)
= [𝑏𝑟 sin (𝑎𝑥) − 𝑎𝑠 sinh (𝑏𝑥)] ∕ (𝑎𝑏𝛾) + 𝑟𝑠 [cos (𝑎𝑥) − cosh (𝑏𝑥)](

𝜎𝜔2 cos 𝑎 − 𝜎𝜔2 cosh 𝑏 + 𝑎𝛾 sin 𝑎 + 𝑏𝛾 sinh 𝑏
)

𝛾 [−𝑎2𝑠𝛾 cos 𝑎 − 𝑏2𝑟𝛾 cosh 𝑏 + 𝜎𝜔2 (𝑎𝑠 sin 𝑎 + 𝑏𝑟 sinh 𝑏)]
(50)

Φ (𝑥)
(
𝑎2 + 𝑏2

)
=
[cos (𝑎𝑥) − cosh (𝑏𝑥)]

𝛾
+ [𝑎𝑠 sin (𝑎𝑥) + 𝑏𝑟 sinh (𝑏𝑥)](

𝜎𝜔2 cos 𝑎 − 𝜎𝜔2 cosh 𝑏 + 𝑎𝛾 sin 𝑎 + 𝑏𝛾 sinh 𝑏
)

𝛾 [𝑎2𝑠𝛾 cos 𝑎 + 𝑏2𝑟𝛾 cosh 𝑏 − 𝜎𝜔2 (𝑎𝑠 sin 𝑎 + 𝑏𝑟 sinh 𝑏)]
(51)

When a tip mass is absent, 𝜎 = 𝜇 = 0 in Equations (48)-(51).

4 PARAMETRIC ANALYSIS

Before providing an analysis of forced vibrations, the changes in frequencies with the variation in the involved parameters
are briefly discussed in this section.
When 𝛼 = 1 and 𝜌 = 𝜎 = 0, that is, no vertical load or rotary inertia is considered, the frequency versus β/γ and

γ/μ for the first four modes is as shown in Figure 2. Similarly, a plot of the first period, which can be of practical interest,
versus β/γ for various γ/μ values is shown in Figure 3.
The effect of the vertical load (𝛼 < 1) on the frequency is shown in Figure 4. The figure shows the frequency of the first

mode versus γ/μ, at four different values of β/γ, where the constant vertical load is varied from 0 to 0.8 of the buckling
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SAITTA 11

F IGURE 5 First five modal shapes of the bridge pier examined in Section 7.1: deflection (A) and rotation (B) without tip mass and with
tip mass (C and D).

TABLE 1 Comparison of frequencies of the first five modes (rad/s).

Mode

Proposed
method with
µ = 𝜎 = 0

Abramovich
H. (1992)

1 5.181 5.181
2 31.689 31.679
3 83.588 83.411
4 151.653 150.752
5 230.727 228.058

load. The critical load can be evaluated based on the existing literature for Timoshenko cantilever beams, or equivalently,
based on the approach of this study using Equation (33), after setting ω = 0 in Equation (32). By imposing the boundary
conditions, the critical value of 𝛼 is 𝛼𝐶 = 4∕(4 + 𝜋2𝛾), from which 𝑃𝐶 = 𝐺�̃�(𝛼𝐶 − 1).
Figure 5 shows the modal deflection and rotation for the case presented in Section 7.1, in the presence (a and b) or

absence (c and d) of the tip mass. For the same example, to validate the model against other continuous models, Table 1
shows the frequencies obtained using the proposed method when μ = 𝜎 = 0, that is, the case with no tip mass and rotary
inertia, with the solution obtained by Abramovich.15
More comparisons are presented in Section 7 using FEmodels. Although the FEmodels are not exact, they are beneficial

for addressing aspects not considered by existing continuum models, such as the non-uniformity of the parameters and
the presence of tip mass and rotational inertia. Additionally, they are beneficial for seismic analysis.
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12 SAITTA

5 ORTHOGONALITY CONDITIONS

To obtain an uncoupled system of modal equations, the differential problem must be self-adjoint, as verified using the
approach reported by Han et al.5 Using the differential operators defined in Equation (21) and the total derivative instead
of the partial derivative, the problem is self-adjoint if

∫
1

0

𝚿T
i
𝚿j dx = ∫

1

0

𝚿T
j
𝚿i dx (52)

∫
1

0

𝚿T
i
𝚿j dx = ∫

1

0

𝚿T
j
𝚿i dx (53)

In general, we assume non-uniform beam properties. By performing integration by parts and some manipulations, we
obtain

∫
1

0

𝚿T
i
𝚿j dx = [𝑉𝑖 (𝑥) (𝛼 (𝑥)𝑉

′
𝑗 (𝑥) − 𝜀 (𝑥)Φ𝑗(𝑥))]

1
0 − ∫

1

0

𝑉′
𝑖
(𝑥)(𝛼(𝑥)𝑉′

𝑗
(𝑥) − 𝜀(𝑥)Φ𝑗(𝑥))dx

+∫
1

0

Φ𝑖(𝑥)𝜀(𝑥)[𝑉
′
𝑗
(𝑥) − Φ𝑗(𝑥)]dx + [𝛾(𝑥)Φ𝑖(𝑥)Φ

′
𝑗
(𝑥)]10 − ∫

1

0

𝛾 (𝑥)Φ′𝑖 (𝑥)Φ
′
𝑗
(𝑥)dx

(54)

The right-hand side of the first equation in Equation (52) can be written as

∫
1

0

𝚿T
j
𝚿i dx =

[
𝑉𝑗 (𝑥)

(
𝛼 (𝑥)𝑉′

𝑖 (𝑥) − 𝜀 (𝑥)Φ𝑖 (𝑥)
)]1
0
− ∫

1

0

𝑉′
𝑗 (𝑥)

(
𝛼 (𝑥)𝑉′

𝑖 (𝑥) − 𝜀 (𝑥)Φ𝑖 (𝑥)
)
dx

+∫
1

0

Φ𝑗 (𝑥) 𝜀 (𝑥)
[
𝑉′
𝑖 (𝑥) − Φ𝑖 (𝑥)

]
dx +

[
𝛾 (𝑥)Φ𝑗 (𝑥)Φ

′
𝑖 (𝑥)

]1
0
− ∫

1

0

𝛾 (𝑥)Φ′𝑗 (𝑥)Φ
′
𝑖 (𝑥) dx

(55)

One can easily verify by comparison that the equality is respected, even when non-uniform properties of the beam are
considered. The quantities in the brackets are related to the work at the boundaries, the product of the transversal force
by displacement, or the bending moment by rotation.
The second equation shown in Equation (53) is immediately verified by considering the properties of the delta function.

∫
1

0

𝚿T
i
𝚿j dx = −∫

1

0

𝛽 (𝑥)𝑉𝑖 (𝑥) 𝑉𝑗 (𝑥) dx − ∫
1

0

𝜇 𝛿 (𝑥 − 1)𝑉𝑖 (𝑥) 𝑉𝑗 (𝑥) dx − ∫
1

0

𝜌 (𝑥)Φ𝑖 (𝑥)Φ𝑗 (𝑥) dx

−∫
1

0

𝜎 𝛿 (𝑥 − 1)Φ𝑖 (𝑥)Φ𝑗 (𝑥) dx = −∫
1

0

𝛽 (𝑥)𝑉𝑖 (𝑥) 𝑉𝑗 (𝑥) dx − ∫
1

0

𝜌 (𝑥)Φ𝑖 (𝑥)Φ𝑗 (𝑥) dx

−𝜇 𝑉𝑖 (1) 𝑉𝑗 (1) − 𝜎 Φ𝑖 (1)Φ𝑗 (1)

(56)

Equations (54) and (56) are the orthogonality conditions that allow the equation of motion to be decoupled into linear
elementary oscillators.
In fact, based on Equations (20) and (22), and considering Equations (52)–(53), when 𝑖 ≠ 𝑗, the following result holds:

∫
1

0

𝚿T
i
𝚿j dx = 0∫

1

0

𝚿T
i
𝚿j dx = 0 (57)

6 FORCED RESPONSE BYMODAL SUPERPOSITION

In the case of a forced response, when only time-dependent transverse forces act on the structure, Equation (20) can be
written as follows:

 𝐮 + �̈� =

[
−𝑓𝑦 (𝑥, 𝑡)

0

]
(58)
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SAITTA 13

The response in terms of the superposition of modal shapes is written as follows:

𝐮 (𝑥, 𝑡) =

𝑛∑
𝑗=1

𝚿j (𝑥) 𝑞𝑗 (𝑡) (59)

𝑛∑
𝑗 = 1

𝚿j (𝑥) 𝑞𝑗 (𝑡) +

𝑛∑
𝑗 = 1

𝚿j (𝑥) 𝑞𝑗 (𝑡) =

[
−𝑓𝑦 (𝑥, 𝑡)

0

]
(60)

By pre-multiplying the above by𝚿T
i
(𝑥) and performing integration:

𝑛∑
𝑗 = 1

⎡⎢⎢⎣
1

∫
0

𝚿T
i
(𝑥)𝚿j (𝑥) dx

⎤⎥⎥⎦ 𝑞𝑗 (𝑡) +
𝑛∑

𝑗 = 1

⎡⎢⎢⎣
1

∫
0

𝚿T
i
𝚿j (𝑥) dx

⎤⎥⎥⎦ 𝑞𝑗 (𝑡) =
1

∫
0

𝚿T
i

[
−𝑓𝑦 (𝑥, 𝑡)

0

]
dx (61)

Subsequently, using the orthogonality conditions in Equations (54) and (56), the modal equations can be expressed as
follows:

𝑞𝑖 + 𝜔2
𝑖
𝑞𝑖 =

1

∫ 1

0
𝛽 (𝑥) [𝑉𝑖 (𝑥)]

2
𝑑𝑥 + ∫ 1

0
𝜌 (𝑥) [Φ𝑖 (𝑥)]

2
𝑑𝑥 + 𝜇 [𝑉𝑖 (1)]

2
+ 𝜎 [Φ𝑖 (1)]

2

1

∫
0

𝑉𝑖 (𝑥) 𝑓𝑦 (𝑥, 𝑡) 𝑑𝑥 (62)

where:

𝜔2
𝑖
=

∫ 1

0
𝑉′
𝑖 (𝑥)

(
𝛼 (𝑥)𝑉′

𝑖 (𝑥) − ε (𝑥)Φ𝑖 (𝑥)
)
𝑑𝑥 − ∫ 1

0
Φ𝑖 (𝑥) ε (𝑥)

[
𝑉′
𝑖 (𝑥) − Φ𝑖 (𝑥)

]
𝑑𝑥 + ∫ 1

0
𝛾 (𝑥)

(
Φ′
𝑖 (𝑥)

)2
𝑑𝑥

∫ 1

0
𝛽 (𝑥) [𝑉𝑖 (𝑥)]

2
𝑑𝑥 + ∫ 1

0
𝜌 (𝑥) [Φ𝑖 (𝑥)]

2
𝑑𝑥 + 𝜇 [𝑉𝑖 (1)]

2
+ 𝜎 [Φ𝑖 (1)]

2
(63)

When the tip mass is absent, the quantity 𝜇 [𝑉𝑖(1)]
2
+ 𝜎 [Φ𝑖(1)]

2 in the denominator vanishes.
Finally, in the case of seismic motion at the base, considering Equation (17), Equation (62) assumes the following form:

𝑞𝑖 + 𝜔2
𝑖
𝑞𝑖 = −

𝑣𝑔 (𝑡)

∫ 1

0
𝛽 (𝑥) [𝑉𝑖 (𝑥)]

2
𝑑𝑥 + ∫ 1

0
𝜌 (𝑥) [Φ𝑖 (𝑥)]

2
𝑑𝑥 + 𝜇[𝑉𝑖 (1)]

2
+ 𝜎[Φ𝑖 (1)]

2

⎡⎢⎢⎣
1

∫
0

𝛽 (𝑥)𝑉𝑖 (𝑥) 𝑑𝑥 + 𝜇 𝑉𝑖 (1)

⎤⎥⎥⎦ (64)

When modal damping is considered with ratio 𝜁𝑖 , as in the typical case, the term 2𝜁𝑖𝜔𝑖 can be added into the previous
equation, as will be shown in the examples in Section 7.
Even if the properties of the beam are not constant, Equations (55) and (56) show that if an exact solution is obtained for

the frequencies and modal shapes satisfying boundary conditions, then the equations of motion can be decoupled in the
modal space. However, in this case, the closed-form solution of the linear system of equationswith the variable coefficients
in Equation (29) may be difficult to obtain, depending on the complexity of the functions involved. The Galerkin approach
can be used to obtain a solution (Appendix A). The first step is to evaluate the approximating functions by assuming
constant properties for the beam and fixing the values of the variable coefficients at a specified section. If this section
is at the free end, then the approximated modes are evaluated using Equation (50)–(51) also satisfying natural boundary
conditions (see Equation (55)). However, numerical analysis shows that this approach is not optimal for the evaluation of
base forces. This aspect is discussed in Section 7.3.

7 APPLICATIONS

7.1 Bridge pier with constant properties

As a first example, we consider a bridge pier with a uniform cross-section. The following properties were assumed: height
L = 60 m, tip mass �̃� = 435925 kg with rotary inertia 𝐽 = 5.51 106 kgm2, cross-section area A = 7.38 m2 and reduced
shear area �̃� = 4.06 m2, moment of inertia I = 16.95 m4, and rotatory moment of inertia per unit length 𝐽 = 43197.2 kgm.
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14 SAITTA

F IGURE 6 East component of acceleration recorded at the Accumoli station (Italy) on October 30, 2016 by the Italian Strong Motion
Network (RAN), during the Central Italy seismic sequence.

F IGURE 7 Extruded view of the finite element model and cross-section.

The Young’s modulus of the material was E = 3.3345 1010 N/m2, Poisson coefficient ν = 0.2, and distributed mass per unit
lengthm = 18817.5 kg/m. A vertical constant internal force P = −20 MN was assumed.
The pier was excited at the base via seismic acceleration, which was set as the east component of the earthquake (mag-

nitudeMw 6.5, Figure 6) recorded at the Accumoli station (Italy) onOctober 30, 2016 by the Italian StrongMotionNetwork
(RAN),26 during the Central Italy seismic sequence.
The response evaluated using the proposed method was compared with that of a FE model using 60 beam elements,

defined using the commercial code Midas Gen (Figure 7). The formulation of the elements was based on the Timoshenko
beam theory, where the stiffness effects of tension/compression, shear, and bending deformationswere considered. Linear
shape functions were used for displacements, whereas quadratic interpolation functions were used for rotation.27
The FE analysis was based on a direct step-by-step time integration nonlinear analysis, where a damping matrix with

a damping ratio of 0.05 was constructed using the modes of the linear model. In the nonlinear case, large displacements
were assumed to consider the effect of the vertical load by imposing initial vertical internal element forces to evaluate the
geometric stiffness. The frequencies are listed in Table 2.
The results are presented in Figure 8 in terms of the displacement at the top (a), rotation (b), base shear (c), and base

moment (d). The continuous red lines show the FE results, whereas the dashed black lines represent the results of the
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SAITTA 15

TABLE 2 Circular frequencies (rad/s).

Mode FEmodel Continuous model
𝝎𝒊 𝝎𝒊

1 3.31 3.23
2 24.47 24.28
3 67.02 66.33
4 118.91 117.41
5 175.10 172.67
6 243.03 238.76
7 322.99 316.28
8 410.03 400.93
9 500.92 489.83
10 593.81 581.38

F IGURE 8 Comparison between finite element (FE) element nonlinear model (continuous red line) and the proposed method (dashed
black line): (A) displacement at the free end; (B) rotation at free end; (C) base shear, and (D) base moment.

continuousmodel. The curves overlapped perfectly.Notably, the FE analysiswas nonlinear,whereas the continuousmodel
analysis was linear. This aspect will be further discussed in the following example.

7.2 Steel cantilever with pipe section and tip mass

To highlight the effect of the vertical force, a steel tubular cantilever with an outer diameter of 30 cm, thickness of 5 mm,
and height L = 10 m was considered. At the free end, the mass �̃� = 10193.7 kg and rotary inertia 𝐽 = 1699 kgm

2. The
cross-section area A = 3.63 10−3 m2, reduced shear area �̃� = 2.32 10−3 m2, and moment of inertia I = 5.04 10−5 m4. The
Young’s modulus of the material was E = 2.1 1011 N/m2, Poisson coefficient ν = 0.3, and distributed mass per unit length
m = 36.35 kg/m.
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16 SAITTA

F IGURE 9 Comparison between finite element (FE) (A) linear (continuous red line) or nonlinear (dashed red line) models and the
proposed continuous method, when P = 0 (continuous black line) and P = −100 kN (dashed black line): (B) displacement at free end; (C)
Base shear; (D) Base moment.

Two cases were considered: in the first case, the internal vertical force is equal to P=−100 kN, which corresponds to the
weight of the tipmass, and in the second case, the tipmass is present but the vertical force is not considered. In this case, the
FEmodel was set up usingMidas Gen and 50 beam elements. Two analyses were performed under seismic base excitation
using the same time history as that in the previous example. One was based on a linear modal step-by-step integration
with 0.05 added modal damping ratio, and the second was a nonlinear analysis, as in the previous example, where large
displacements were assumed to consider the effect of the vertical load. The extrudedmodel is shown in Figure 9A. In both
the linear and nonlinear cases, a tip mass with rotary inertia as well as shear deformability were considered.
Figure 9B–D show the results, as indicated by continuous lines, of the linear FE model (red) and the solution obtained

by the proposedmethodwhen the vertical force was not considered (black).Moreover, as indicated by dashed lines, the FE
nonlinear solution (red) was compared with the proposed method (black) when the force was considered. The solutions
for the displacement at the free end, base shear, and base moment are presented. The linear FE case agreed well with
the continuous approach solution when vertical force was not considered. By contrast, the nonlinear FE model in large
displacements agreedwell with the continuous solution with P=−100 kN. Notably, the proposedmodel is linear, whereas
similar FE results are based on a nonlinear model. Table 3 lists the frequencies evaluated by FE linear model and the
continuous model.

7.3 Bridge pier with variable cross-sections

Finally, a non-uniform cross-section case was considered: a reinforced concrete bridge pier with a hollow cross-section
(Figure 10).
The height of the pier was L= 75m, and the cross-sectional shape, whichwas almost square, had an external side length

that varied based on the following parabolic expression: 9.225 − 0.096𝑥 + 0.0006𝑥2 (m). The thickness was 0.6 m. The
distributed mass was 𝑚 (𝑥) = 103 (52.832 − 0.587𝑥 + 0.004𝑥2) (kg), and the vertical variable internal force P = −37751.2
+ 518.434 x − 2.88 x2 + 0.012 x3 (kN). Figure 11A,B reports the area and moment of inertia versus vertical coordinate.
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SAITTA 17

TABLE 3 Circular frequencies (rad/s).

Continuous model
FE linear model P = 0 kN P = −100 kN

Mode 𝝎𝒊 𝝎𝒊 𝝎𝒊

1 1.75 1.75 1.37
2 44.87 44.86 44.01
3 130.32 130.26 129.06
4 327.03 326.38 324.49
5 622.42 619.87 617.74
6 1001.74 995.28 993.00
7 1453.82 1441.07 1438.66
8 1967.65 1946.40 1943.89
9 2532.74 2501.45 2498.83
10 3139.35 3097.59 3094.85

F IGURE 10 Pier profile, cross section and finite element (FE) model.

F IGURE 11 Area and reduced shear area (A) and moment of inertia (B) versus vertical coordinate.

The unit rotary inertia 𝐽(x) can be easily derived by assuming a unitary weight 𝛾𝑐 = 25 kN∕m3 and a unitary mass 𝜌𝑐 =
𝛾𝑐 ∕𝑔. The following mechanical characteristics of the structure were assumed: 𝐸 = 3.3345 ⋅ 1010 N∕m2, 𝐺 = 𝐸∕2(1 + 𝜈),
𝜈 = 0.2. At the free end, a lumpedmass �̃� = 1.02 ⋅ 106 kgwith rotatory inertia 𝐽 = 1.07 ⋅ 107 kgm

2 was applied, to simulate
the pier cap and the contribution of the bridge deck, which was fully restrained transversally. Non-dimensional quantities
were defined by assuming the reference value 𝐺�̃�(𝑟) ≡ 𝐺�̃�(0) in the denominator of Equations (16).
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18 SAITTA

F IGURE 1 2 First five modal shapes, approximated and corrected, for deflection (A) and rotation (B).

TABLE 4 Circular frequencies (rad/s).

Continuous model FE model
�̃�𝒊 𝝎𝒊 𝝎𝒊

Mode (rad/s) (rad/s) (rad/s)
1 5.36 4.38 4.43
2 34.36 26.27 26.41
3 87.23 66.72 67.04
4 150.02 114.82 116.08
5 216.66 176.01 165.68
6 279.15 234.42 219.66
7 325.75 294.06 283.28
8 379.84 361.49 353.06
9 447.92 433.04 425.61
10 507.82 506.35 499.15

To apply the Galerkin approach described in Section 6 and Appendix A, some approximation functions were evaluated
based on the assumption of uniform properties. The cross-sectional properties of the free end were considered in the first
analysis. Therefore, the evaluation of 𝐾𝑖𝑗 in Equation (A.2) was facilitated because the natural boundary conditions were
satisfied and the quantities related to the boundaries in Equation (54) vanished.
However, the numerical analysis and comparison with the FE model, based on 75 beam elements showed excellent

match for the displacement and rotation at the top, as well as for the base moment, whereas the base shear was
underestimated. Therefore, a second analysis was performed, where the functions evaluated based on the properties
of the base cross-section were assumed. Only the latter results are reported herein. In this case, 𝐾𝑖𝑗 was evaluated by
considering the boundary conditions in Equation (54). In fact, they were nil at the base, that is, where the essential
boundary conditions were applied. By contrast, they did not vanish at the free end when natural conditions were applied.
Figure 12 shows the first five modal shapes, that is, the approximated (continuous line) and “corrected” (dashed line)
shapes.
Table 4 shows the circular frequencies, that is, the approximated circular frequency �̃�𝑖 and corrected circular frequency

𝜔𝑖 , as well as those derived by FE model. Finally, Figure 13 show a comparison between the FE model (continuous
red line) and the continuous model (dashed black line). The agreement shown was reasonable, similarly for the base
forces.
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SAITTA 19

F IGURE 13 Comparison between finite element (FE) element nonlinear model (continuous red line) and the continuous method
(dashed black line): (A) displacement at the free end; (B) rotation at free end; (C) Base shear, and (D) Base moment.

8 CONCLUSIONS

A complete modal analysis was proposed for a compressed cantilever Timoshenko beam with tip mass/inertia, consid-
ering only motion in the transverse direction. A continuous model was used for this purpose. An original approach was
presented herein for deriving the characteristic equation and modal shapes in a closed form based on a non-dimensional
formulation. Instead of solving the fourth-order equations for deriving the modal functions and frequency equation, the
proposed approach uses a first-order matrix exponential method. When the tip mass and inertia were considered, the
solution was obtained using the Laplace transform.
Orthogonality conditions were derived, and the decoupling of the equation of motion in the case of uniform beam prop-

erties was presented, such as the solution by modal superposition in the case of a forced seismic response. The Galerkin
approach was used when the cross-sectional properties vary with continuity. Comparison with the FE model showed
excellent agreement between the response of the continuous linear model under vertical force and that of the nonlinear
FE model assuming large displacements.
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APPENDIX A
Let us denote the approximate modes and frequencies as �̃�i and �̃�𝑖 , respectively. Using Equation (61), a coupled system
of modal equations can be obtained as follows:

𝐌 ˜̈𝐪 (𝑡) + 𝐊 �̃� (𝑡) = 𝐟 (𝑡) (A.1)

where

𝐾ij =

1

∫
0

Ψ̃T
i
 Ψ̃j (𝑥) dx 𝑀ij =

1

∫
0

Ψ̃T
i
 Ψ̃j (𝑥) dx f𝑖 (𝑡) =

1

∫
0

Ψ̃T
i

[
𝑓𝑦 (𝑥, 𝑡)

0

]
dx (A.2)

𝐌 and𝐊 are non-symmetric n × nmatrices, such as𝐌−1𝐊. Vectors �̃�j are not orthogonal with respect to the operators and. Nevertheless,𝐌−1𝐊 is diagonalizable and can bewritten as a productΔΩ2Δ−1, whereΩ2 is the diagonalmatrix
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of 𝜔2
𝑖
, and Δ is the invertible matrix of eigenvectors. Hence,

�̈� (𝑡) + 𝛀2 𝐪 (𝑡) = 𝚫−1 𝐌−1𝐟 (𝑡) (A.3)

where �̃� (𝑡) = 𝚫 𝐪(𝑡) , and the values of 𝛀2 are the actual frequencies of the structure. Therefore, the displacement
solution is written as follows:

𝐮 (𝑥, 𝑡) =

𝑛∑
𝑗=1

�̃�j (𝑥) [𝚫 𝐪 (𝑡)]𝑗 (A.4)

This implies that the “corrected” mode is

𝚿j (𝑥) =

𝑛∑
𝑖=1

�̃�i (𝑥) Δ𝑖𝑗 (A.5)
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